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A formula due to G.D. Maliuzhints for calculating the sound transmission
through a fine grid by means of the added mass of its elements is well known
to the speclialist, although 1t was never published by its author. A new
prgof of Maliuzhints' formula 1s given below, with the consent of its origi-
nal author.

Pirst a few preliminary remarks will be made, It is assumed that the
fluid 1s 1deal and compressible. The pressure P 1is a function of the den-
sity p only. The velocities of the fluld particles are soc small that their
squares may be neglected in comparison with the firat powers of them. The
variations in density and pressure are also small.

The flow (a plane sound wave) possesses & velocity potential & . If this
potential can be represented in the form ei“",‘ (z, y), then 1t satisfies the
wave equation (cf., for example, [1]
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where ¢ 1s the veloclity of sound. It is known that the intensity of sound
is measured by the flow of energy carried by the progressive waves through
a unit of area. We shall consider & plane sound wave with the potential

® = A cos (ot — kz) + Bsin(ot — kx)

which satisfies (1). It 1s not difficult to calculate the intensity of sound

for such a flow: /o o
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The behavior of the velocity potential #(x,y) at large distances from
the grid may be investigated with the help of Rayleigh's method [2], The
investigation of the flow of fluid in front of the grid and behind it may be
carried out by similar procedures. Thus we shall 1imit our consideration to
the flow behind the grid. Let us take a plane sound wave having a potential
of the form A cos{wt — xx + 6,) , where 4 and g, are arbitrary constants.
We place in our flow a grid with axis parallel to the y-axis, Let the y-axis
be very close to the right-hand side of the gria and let the screen have
period I = 2n/p . We shall consider the flow in the half-plane x > O ,
Since its potential is clearly proportional to the velocity of the initial
flow for x = O , then we shall assume that for x = 0O the following rela-
tion is valid for the potential §

®, ., = ap+ aycos py 4 bysinpy 4 ... +a, cosnpy + b, sin npy . . .
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vwhere a, and ), are linear combinations of cos w¢ and sin wt . For x>0
we seek & potential of the form

D = agdy (z) 4. ..+ a,A, (2) cos npy + b,B, (z) sin npy + . . . (3)

From Equation (1) 1t follows that 4°4,/dx"= — ¥4, . Consequently, 4
is a linear combination of cos kx and s8in 3x . The corresponding term in
(3) gives the potential of the transmitted wave. Further, in view of Equa-
tion (1), 4, (and also p,) satisfy Equation

d“mn,falx2 = (n?p® — %) A,
If the structure of the grid is fine, i.e. p >k , then
A = Cl o Vn‘p‘-k* + Czex V‘n’p’-—k'
n

where (¢, and (, are constants. It 1s physically clear that as x - = the
amplitude must remain finite, and hence (.= 0 . Therefore the velocity
field behind the grid consists of a transmitted wave and a flow with a poten-
tlal decaying at least as exp (— Vps — k‘x) as x = o ,

If the structure of the grid is sufficiently fine, then we assert that it
1s not difficult to generallize to the case where the axis of the grid is not
perpendicular to the direction of the sound wave.

An gnalysis similar to that just given shows that in this more general
case the flow behind the grld will consist of a transmitted wave and a flow
whose potential decays exponentially as - o , as long as the angle between
the axis I of the grid and the x-axis ’fsee Fig.1) is not small,

We now proceed to the derivation of the
formula of Maliuzhints for sound transmission
through a fine grid. If we place in the path
of a sound wave moving along the x-axis a grid
whose period and thickness are small in compa-
rison with the wavelength A = 2n/% , then part
of the wave will pass through the grid, part
will be reflected, and furthermore, there will
be a flow which is noticeable only in the imme~
Fig. 1 diate neilghborhood of the grid.

We f1x the origin of coordinates within one
of the elements of the grid. Let the potentilal of the incident and reflected
waves in front of the grid be

O = 4 cos (ot — km)‘ 4 B sin (@t ~ kz +-B) -+ Csin (0t 4+ kx 4 1)

Let ®® =4 cos (0t~ kz) be the potential of the transmitted wave. The
parameters 4, B, C, p and are related so that the flow to the left of
the grid Joins continuously wlth the flow to the right., After thils the coef-
ficlent of sound transmission of the grid is found quite readily. On account
of the smallness of the dimensions of the grid compared to the wavelength,
the velocity of the flow impinging on the grid is equal to

U= [8® ] dz],_, = kA sin ot — kB cos (ot +B) - kC cos (@t < 1)

The velocity immediately behind the screen is equal to
U® = [006) 1 o] _ = kA sin o

Because of the continuity of the flow and the incompressibility of the
liquid near the grid, it must be assumed thatU) = @ whence B = and
f =+v,, and the velocity of the flow impinging on the grid equals

U = kA sin ot (4)

We shall now consider the picture of the flow in more detall., We choose
the element of the grid containing the origin of the coordinate system and
the band of flow from x = -~ ® to x == which corresponds to this element.
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There 1s no need to specify the form of this band more precisely; i1t will
sufflce to assume that its upper and lower boundaries are displaced from each
other by the spaci of the grid, We shall divide this band into three
regions (see Fig. ?%.

Regilion 1 extends from x = —® %o x = O . The potential in this
region 1is

® = O = 4 cos (0t — kz) + B [sin (0t — kx -+ B) = sin (0t - kz + B)]

Regilon 2 1s in the neighborhood of x = O ; its dimensions in
all directlons are small in comparison with the wavelength (il.e. x./A2+ 1P 1s
small in this reglon), but ¢ — the length of region 2, although infinitely
small compared to the wave length, 1s Infinitely large in comparison with
the period of the grid. The flow in region 2 may be treated as the flow of
an incompressible fluid ([1], Chapter X, Section 290, 305), impinging on the
grid with velocity U .

The flow in region 2 consists of the flow caused by 2 grid moving with
velocity — 7 (potential @ ) and a uniform flow with potential U,

©=0%=¢ ¢ Uz
Region 3 extends from x =« to x = O, The potential in it is
D - OB = 4 cos (0t — kz)
We shall noe calculate the difference 66U 1in potential between the right
and left boundarles of region 2 by two different methods. On the one hand,

neglecting in each of the terms @) and @3 the small quantities |mx| of
higher order, we obtain

0D = ke A sinwt — 2B sin(wt - f) (3
On the other hand, the same difference in potential 1s equal to
00 = Ue + bg 6)
where 8g 18 the potential difference between the right and left boundaries

of region 2. As a consequence of the stated assumptions regarding the struc-
ture of the grid and the dimensions of region 2 we have

S = Pix-r00) — Prmr-00) = Poo — Pco (7)
From (4) to (7) follows the approximate equality
—2Bsin (0t 4 8) = o, — @_q (8)

In using the theorem of change in momentum, we can calculate . — ?_,
by means of the added mass and area »f an element of the grid. According to
Sedov [3]

U+ Bl = —pSU +ip\sav, w=g4if, z=ziiy O

where § 1s the area of an element of the grid, ),, is the added mass in
the x-direction, and @ 1is the complex potentilal of the flow for a moving
grid. The integral is carried out along any closed contour which encircles
the element of the grid once. It may be shown that at infinity to the left
and right
(dw
z

jnded — 0
dz)x=too 0 (10)

Therefore, extending the contour of integration up to the boundaries of
region 2, i.e, from x = — o to x = « a8 compared with the period and
thickness of the grid, and using the fact that the complex velocitles dw/dz
are equal at those points on the upper and lower boundaries which differ by
the period I(sin® 4 icos®) we obtain

§Mw= —I(sin @ -+ icos®) (w, —w_o) = — L(sin ® + icosd) (P, — P_o0)
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Hence, using (9), 'we obtain

k4 sinot (Ay + pS) (11y
Poo = P = pl cos ¢

Substituting e, — ¢, from (11) into (8), we find that

kA sinot (Ay 4 pS)
plcos ¢

— 2Bsin(wt +p) =

_ kA Ay +pS)
—  2plcos®

Then using Equation (2), we find that the average energy £, carried by

the incoming wave, and the energles £, and §g, of the transmitted and reflec-
ted waves are, respectively,

tion r

. _ POk 2[ K (Mg + pS)? pok pok K (hy + pS)?
Ey== 41+ 4p%2 cosq] » BEa="5 A Ey="5 A 4p2 cos? O
Hence we have for the coefficlients of sound transmission o and reflec-
1 1 o (A - pS)]z 1 1 [ 2pC! cos '&}2
e =1+ | 2pCreos® | r- ® (Ayy + pS

Thus the knowledge of the added mass of the grid enables one to calculate

the coefficients of sound transmission and reflection of the grid, that is,
to settle the question of how much of the sound 1s transmitted and how much
reflected.
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